
To appear in the Proceedings of the Fourth International Symposium on Requirements
Engineering (RE’99), Limerick, Ireland, June 7-11, 1999

Formal Modeling of Space Shuttle Software Change Requests using SCR

Virginie Wiels Steve Easterbrook
ONERA-CERT Institute for Software Research

BP 4025, 2 avenue Edouard Belin 1000 Technology Drive,
F31055 Toulouse, France Fairmont, WV 26554, USA

Virginie.Wiels@cert.fr easterbr@csee.wvu.edu

Abstract
This paper describes a feasibility study into the use of a
formal requirements modeling method (SCR) to assist
with Independent Verification and Validation of change
requests for Space Shuttle flight software. The goal of the
study was to determine whether a formal modeling
technique could automate some of the manual analysis
tasks performed on change requests, including
consistency checking. To analyze the change request, the
key part of the original functionality was modeled in SCR.
The model was then updated to reflect the proposed
changes. Tool support was used to perform consistency
checking and to validate the model against domain
properties. The study showed that as an analysis tool,
formal modeling offers some advantages over inspection-
based approaches. However, the problem of analyzing
change requests is sufficiently different from other
requirements modeling tasks that some specialist tools
will be needed. The paper ends with a discussion of the
demands of these needs.

1. Introduction

This paper reports on our experiences applying the
SCR (“Software Cost Reduction”) method [1] to model
flight software change requests for the space shuttle, as
part of an investigation of automated tools for software
verification and validation. This study explored the
applicability of SCR for determining correctness,
consistency, and completeness of shuttle change requests.
The work was conducted at the request of the Shuttle
Independent Verification and Validation (IV&V) team.
The IV&V team was interested in SCR for two reasons:
• The ability to automate some of the tedious manual

consistency checking that is currently necessary when
analyzing change requests.

• The ability to animate the requirements in a
simulation, to validate the specified behavior.

One of the key questions addressed by this study is

whether formal methods can be applied to reason about
requirements changes to legacy systems for which there is
no existing formal specification. Even if good quality
documentation exists for such systems, the problem of
tracing the impacts of proposed changes is immense. For
such systems, the ability to automate some aspects of
verification and validation of change requests may
represent a large cost saving. We regard focussed
application of formal methods as a step towards providing
that automation.

Formal modeling of change requests for a large system
is interesting for a number of reasons. Firstly, very little
attention has been paid in the formal methods community
to the management of change during systems
development. Hence, most case studies of formal methods
have concentrated on the use of a formal specification as a
baseline from which designs and implementations can be
verified. Consideration of how changing requirements are
handled in this process have been limited to dealing with
refinement (i.e. correctness-preserving elaborations), such
that if the implementation is derived from a specification,
then an updated implementation can be derived in a
similar way from a refined specification. In large systems
development, many requirements changes occur that are
not correctness preserving. If formal methods are to be
successfully applied in such a context, they must be able
to handle evolving specifications, without requiring
extensive effort to modify and re-validate the formal
models. In principle, formal methods open up new
possibilities for reasoning about proposed requirements
changes, thus helping to validate the change requests, and
hence facilitate the decision about whether to accept or
reject each proposed change.

Space Shuttle change requests offer an excellent
testbed to explore these issues. The shuttle flight software
is an extremely well documented system, where a
complete set of revised specifications is available for each
version of the software, and the lifecycle of each change
request is fully documented. The process for proposing

and evaluating change requests is relatively mature, so
that the relative benefits of any new techniques can be
measured with some accuracy. Finally, the current
specifications are very detailed, but entirely informal.

1.1 Shuttle Change Requests

As an operational vehicle, the Space Shuttle regularly
needs updates to its flight software to support new
capabilities (such as docking with the space station),
replace obsolete technology (such as the move to GPS for
navigation), or to correct anomalies. Software updates are
known as Operational Increments (OIs), and are typically
completed approximately every twelve to eighteen
months. An OI will implement any number of change
requests (CRs). Each change request goes through a
rigorous analysis and review process before it can be
approved for inclusion in an OI. A change request
typically consists of a selection of pages from current
Functional Subsystem Software Requirements (FSSR)
specifications, with handwritten annotations showing new
and changed requirements. Change requests vary in length
from a few pages to several hundred pages.

Each change request is reviewed by a number of
requirements analysts, along with members of the IV&V
team, culminating in a formal requirements inspection.
Following the inspection, the change request may be
rejected, revised for re-inspection, or forwarded to the
review board for inclusion in the current OI. The Shuttle
Avionics Software Control Board (SASCB) makes the
final decision whether to include each CR in the OI. Their
decision takes into account various factors, including total
size of the changes, relative priorities of the change
requests, and interaction between change requests.

This case study concentrated on change request
#90724, the East Coast Abort Landing (ECAL)
automation. The change request consisted of 104 pages,
affecting seven existing specifications. The change
request covers changes needed to automate the entry
guidance for an emergency landing at sites on the East
Coast or Bermuda. Several types of abort are possible
following a loss of thrust during launch, including return
to launch site (RTLS), transatlantic abort (TAL) and abort
to orbit. ECAL is an intermediate solution between RTLS
and TAL, but is not currently automated. The rationale for
automating ECAL is that it will reduce costs of crew
training, and increase the probability of successful abort
landing. The additional functionality includes the
management of the shuttle’s energy during descent and
the guidance needed to align it with the selected runway.

1.2 Modeling approach

SCR was chosen for a number of reasons:
• SCR was designed for reactive control systems,

indicating a good match with shuttle guidance and
navigation software.

• Tool support was available, with extensive automated
consistency checking and a simulator linked to a
model checker to validate dynamic properties of the
model.

• The basic constructs of SCR match the shuttle
documentation very well. The use of tables to
represent control functions and the ability to include
real-valued input variables directly in the model help
to reduce the conceptual distance between the existing
documentation and the formal model.

Initial analysis indicated that it would not be feasible to
model the new functionality of the change request in
isolation from the existing requirements. Accordingly, our
approach was to model the existing requirements first,
checking this model for consistency, and then updating it
to reflect the changes listed in the CR.

In order to focus the modeling effort, we concentrated
on only one of the seven FSSRs affected by the change
request, namely STS-83-0001-27 “GN&C Part A Entry
Through Landing Guidance”. The changes all referred to
the “Return-to-launch site (RTLS) Terminal Area Energy
Management (TAEM) Guidance”. This represented
approximately two-thirds of the page count of the change
request. This portion was selected because it contained the
core of the new functionality, whilst allowing us to restrict
the scope of our modeling.

2. SCR

SCR (Software Cost Reduction) is a formal method for
modeling and validating system requirements as a
deterministic state machine, represented using a set of
tabular notations. A toolset has been developed by the
Naval Research Laboratory (NRL) to support the method.
In this section, we give a brief description of the SCR
method and tool. Detailed descriptions of the syntax and
semantics of SCR can be found in [1].

2.1 SCR method

SCR models a system as a black box that computes
output data from input data. Three kinds of variables are
distinguished: monitored variables represent the inputs of
the system (environmental quantities that influence
system behavior); controlled variables represent the
outputs of the system (environmental quantities that the
system controls); and terms are intermediate, internal
variables used in the computation. The functionality of the
system is defined by expressing the values of the
controlled variables as a function of the monitored
variables, terms, and current system state. To facilitate
this definition, SCR introduces two other modeling
primitives: mode classes and events. Mode classes

represent abstract states in the system behavior. There can
be several different mode classes for the same system:
each mode class has a name, possible values (‘modes’)
and an initial mode. Events are changes in value of
variables. Each change in a monitored variable is treated
as a separate event, and a simplifying assumption is made
that only one input event occurs at once (i.e. that it is
always possible to compute the new state arising from an
event before processing the next event).

An SCR specification consists of a set of dictionaries
of vocabulary elements, and a set of tables defining the
system behavior. Each type of vocabulary element is
listed in its own dictionary, one for each of: variables,
types, constants and mode classes. Each mode class, term,
and controlled variable is then defined in its own table.
The value of a mode class is expressed as a deterministic
finite state machine in a mode class table. The table gives
the next mode for each mode change, according to the
current mode and the event that triggers the mode change.
The value of each output variable (and of each term) of
the system is described either as a condition table or an
event table, such that each output variable has exactly one
table defining it:

A condition table defines the values of a variable for
each mode of the associated mode class. Rows represent
the modes, while columns represent the values the
variable can take. Each cell gives the condition under
which the variable takes the given value in the given
mode. A condition table is well-formed if it has the
following two properties:
1. Completeness: the value of the variable must be

defined in every possible system state.
2. Disjointness: in any situation the table gives a unique

value for the variable.
An event table is slightly different: it describes the

cases where the value of the variable changes. If the
system is in a given mode and a certain event occurs, the
event table gives the value that the variable will take in
the next state. Event tables must have disjointness, but not
completeness.

The choice of whether to use an event or a condition
table for each controlled variable is a modeling decision,
as is the choice of which mode class to associate with
each table. We used event tables almost exclusively, as
these matched the operational nature of our source
documents. We discuss this issue further in section 6.

Finally, at the semantic level, an SCR specification
represents a single deterministic state machine, where the
system state is a vector of the values of all environment
variables (monitored and controlled), along with a current
value for each mode class.

The NRL toolset includes a specification editor, a
simulator for symbolically executing the specification and
formal analysis tools for verifying selected properties.
The tool includes a consistency checker, for specification

syntax and type checking, for checking the completeness
and disjointness of tables, detecting dependency cycles
and checking that every mode in a mode class is
reachable. The tool also supports assertions, which are
conditions on individual states or on a pair of adjacent
states, and are proved using a model checker or theorem
prover [2]. The simulator allows the user to ‘run’ a
specification, by entering a sequence of input events, and
observing the resulting outputs.

3. RTLS TAEM Guidance

We modeled the ECAL change request in two steps.
First, we specified the existing requirements for Return-
To-Launch-Site (RTLS) Terminal Area Energy
management (TAEM) Guidance in SCR. Then, we
updated this SCR model to add the change request
concerning East Coast Abort Landing (ECAL).

3.1 RTLS TAEM Guidance

The RTLS TAEM Guidance specifies the software
functions required to guide the orbiter during a
contingency abort. Descent is unpowered: the orbiter acts
as a glider. Acceleration is controlled by varying the angle
of attack of the orbiter. The specification defines seven
guidance phases (numbered in the sequence: 6, 5, 4, 0, 1,
2, 3). The RTLS phases, 6 (alpha recovery), 5 (normal
acceleration (NZ) hold), and 4 (alpha transition phase),
are the concerned with bringing the orbiter under control
with respect to angle of attack, acceleration and attitude.
The TAEM phases, 0 (S-turn phase), 1 (acquisition
phase), 2 (heading alignment phase), and 3 (prefinal
phase), are concerned with aligning the orbiter with the
selected runway, and controlling the approach. Two
extreme conditions have to be handled. If considerable
excess energy exists, an S-turn maneuver is executed to
dissipate this energy. If the vehicle has extremely low
energy, the guidance software sets a flag, to request that
the crew switch the heading alignment cone (HAC) to the
minimum entry point (MEP) HAC location. Crew action
is required to achieve relocation of the HAC. The RTLS
TAEM guidance software receives input from the inertial
navigation and air data subsystems. A ground track
predictor routine (GTP) estimates the horizontal distance
to the runway threshold. This range prediction is used to
calculate energy, altitude, altitude rate and dynamic
pressure values.

The RTLS TAEM specification is divided into fourteen
functions. An executive routine (called GREXEC) is
executed at each time cycle. This routine calls thirteen
other functions depending on the value of the variable
IPHASE, representing the current guidance phase:
• Guidance initialization (GRINIT)
• RTLS Phase transition, and low energy alert (GRTRN)

• RTLS Angle of attack command (GRALPC)
• RTLS Normal acceleration command (GRNZC)
• RTLS Speed brake command (GRSBC)
• RTLS Roll command (GRPHIC)
• Heading alignment cone location function (TGXHAC)
• Ground Track Predictor (GTP)
• TAEM References, dynamic pressure, and spiral adjust

(TGCOMP)
• TAEM Phase transition and low energy alert (TGTRAN)
• TAEM Normal acceleration command (TGNZC)
• TAEM Speed brake command (TGSBC)
• TAEM Roll command (TGPHIC)
The sequencing of these functions is described in natural
language in the documentation; figure 1 presents this
sequencing graphically.
Each of these functions is described in a similar way:

1. general requirements in natural language;
2. detailed requirements in pseudo-code;
3. tables of input and output variables;
4. tables of constants, I-loads, and K-loads1;
5. other requirements, e.g. initialization.

We will take one of these functions (GRALPC) as an

1 constants are physical constants; I-loads are mission
dependent parameters, and can be considered to be constant for
each flight; K-loads are constant across a number of flights

example. The GRALPC function computes the angle-of-
attack for the alpha recovery phase (IPHASE=6) and the
alpha transition phase (IPHASE=4). Detailed
requirements are given in figure 2.

3.2 ECAL Change Request

The goal of the change request is to automate East
Coast and Bermuda abort landings. This will decrease the
loading on the vehicle, increase survivability of the aborts
and increase capability to reach a landing site. The change
request consists of a list of changes to the previous
functions, mainly additions of variables and modifications
of requirements.

For example, the changes for the GRALPC function are
given in figure 3. Five new constants (DPSAC1, DNZMX1,
DNZ1, TLFMX1 and GRALU2), and the three new

TGCOMP
TGTRAN
TGNZC

TGSBC
TGPHIC

GRNZC

TGXHAC
GTP

TGCOMP

GRALPC

GRSBC
GRPHIC

exit

0,1,2,3

0,1,2,3

6, 4
5

46, 5

GRINIT

start
First pass, or runway
index changed

Otherwise

GRTRN

TGNZC

MACH < MSW1

MACH ≥
MSW1

Figure 1: A call graph for the GREXEC function.
Labels on the arcs are conditional branches;
numbers refer to the current guidance phase.

If IPHASE=6, the constant alpha recovery angle-of-attack
command, ALPCMD, as well as the altitude rate dependent
incremental NZ command, DGRNZ, for the load relief phase
(IPHASE = 5) are computed as shown in Equation Set 1.

1.1 If CONT=OFF then ALPCMD=ALPREC
1.2 If CONT=ON then ALPCMD=MIDVAL(ALPRECS *

MACH + ALPRECI, ALPRECU, ALPRECL)
1.3 If HDOT<HDMAX, then HDMAX=HDOT Otherwise

(HDOT>=HDMAX) execute Equation Set 1.3 for intact
aborts (CONT=OFF) or Equation Set 1.4 for contingency
aborts (CONT=ON)
1.3.1 DGRNZ= MIDVAL((HDNOM – HDMAX)* DHDNZ,

DHDLL, DHDUL)
1.3.2 DGRNZT= GRNZC1 + DGRNZ + 1.0
1.4.1 DGRNZT= MIDVAL(DNZB – HDMAX * DHDNZ,

DNZMIN, DNZMAX)
1.4.2 SMNZ1= ZDT1*DGRNZT
1.4.3 DGRNZ= DGRNZT – GRNZC1 – 1.0
1.4.4 NZSW= GRNZC1 – SMNZ1 – SMNZ2 + 1.0

Otherwise (IPHASE /= 6), the angle-of-attack command for the
alpha transition phase is computed. Equation Set 2 tests for the
initial pass through the logic and initializes the command.
2.1 If IGRA=0, then ALPCMD=ALPHA and IGRA=1

Next, a test on IGRA is made. If IGRA = 1, Equation Set 3 is
executed to compute the smoothed angle-of-attack command and
the function is exited.
3.1 DGRALP=MIDVAL(GRALPR–ALPHA, GRALL, GRALU)
3.2 ALPCMD=ALPCMD+DGRALP
3.3 If (DGRALP < 0.0 and ALPCMD <= GRALPR) or

(DGRALP > 0.0 and ALPCMD > GRALPR), then
ALPCMD = GRALPR and IGRA = 2

Otherwise (IGRA /= 1), Equation Set 4 is used to set the angle-
of-attack command equal to the reference angle of attack
4.1 ALPCMD = GRALPR

The function is exited.

Figure 2: Detailed requirements for GRALPC.

variables (DPSAC, LOAD_TOTAL and ECAL) are added.

4. Specification with SCR

Our initial problem was whether to write one SCR
specification for each function or one SCR specification
for the whole system. In the former case, we would not be
able to verify any global property or simulate the behavior
of the whole system, as there is currently no way of
composing individual SCR specifications. Our main
concern was with the integrity of the whole system, so we
chose to write a single SCR specification for the system.

4.1 Modeling the Existing Requirements

We created the SCR specification as follows:
1. Type dictionary. We created a new type for each

different unit of measurement. We could just have
typed all the variables as Float, but we would have lost
the information about units. For example:

Name Base Type Units Legal Values
T_sec Float sec [-10000.0,10000.0]

We also created an enumerated type Flag for the flag
variables. There is no unit associated with this type:

Name Base Type Units Legal Values
Flag Enumerated ND ON, OFF

2. Variable dictionary. For each variable, we considered
whether it was an input or output for the entire system.
Those that are used only for communication between
functions were modeled as terms. We used the
comments field for traceability to the functions. For
example:

Name Class Type Initial
Value

Comment

ALPCMD Cont T_deg 0.0 GRALPC
DGRNZ Term T_g 0.0 GRALPC
SMNZ1 Term T_g 0.0 GRALPC,

GRNZC,
GRINIT

Providing initial values for all variables proved hard,
as these were not always given in the specifications.

3. Constant dictionary. We modeled the constants, I-
loads and K-loads as SCR constants. Providing values
for the I-loads proved hard. As I-load values are not
defined in the specification, we used the set of values
that are made available for testing purposes on the
shuttle project web site. For example, we have:

Name Type Value Comment
ALPREC T_deg 50.0 GRALPC
DHDLL T_g -0.1 GRALPC
DNZB T_g 0.65 GRALPC

4. Mode classes. We identified two SCR mode classes.
The first represents the seven guidance phases,

expressed in the requirements by the IPHASE
variable. The other mode class was somewhat
unnatural for SCR: we chose to represent the current
function executed by the system as a mode class. This
turned out to be very useful, as we could not otherwise
model the functional decomposition in SCR. The table
for the phase mode class was built from all the
functions that describe phase transitions. The table for
the function mode class is in fact the description of the
GREXEC routine.

5. Condition and Event Tables. We wrote a table for each
controlled variable and term of the system.

The main modeling effort lay in this last step: creating the
tables for controlled variables and terms. The method we
used was as follows. Given a variable, we first scan the
FSSR to find the functions in which this variable is
modified. We then analyze the different requirements in
order to decide which kind of SCR table is needed.
Finally we build the table. We take two examples to
illustrate this method: SMNZ1 and ALPCMD. SMNZ1 is
modified in three functions: GRINIT, GRALPC and
GRNZC. In GRINIT, SMNZ1 is initialized to SMNZC1.
The requirements for GRALPC are given in figure 2,
while the relevant section of GRNZC is the following:

Upon entering GRNZC, Equation Set 1 is executed to
calculate the time-variant shaping parameters SMNZ1 and
SMNZ2, and then these are used to calculate the normal
acceleration command NZC.

1.1 SMNZ1 = SMNZC3*SMNZ1
1.2 SMNZ2 = SMNZ2 – SMNZC4
1.3 If SMNZ2 < SMNZ2L, then SMNZ2 = SMNZ2L
1.4 NZC = GRNZC1 – SMNZ1 – SMNZ2 + DGRNZ

We can extract from these three functions the
requirements concerning SMNZ1. They are as follows:
GRINIT: If INIT_PASS=OFF then SMNZ1= SMNZC1
GRALPC: If IPHASE=6 and HDOT>=HDMAX and

CONT=ON, then SMNZ1 = ZDT1*DGRNZT
GRNZC: SMNZ1 = SMNZC3*SMNZ1

We then have to decide whether to write a condition or

Renumber 1.4.2, 1.4.3 and 1.4.4 respectively 1.4.4, 1.4.5
and 1.4.6 and add:

1.4.2 If (ECAL=ON and ABS(DPSAC) > DPSAC1 and
DGRNZT < DNZMX1) then ITGTNZ = 1

1.4.3 If ITGTNZ=1, then DGRNZT = DGRNZT+DNZ1
Renumber 3.1, 3.2, 3.3 respectively 3.2, 3.3, 3.4 and add
the following just before 3.2:
If (ECAL = ON and LOAD_TOTAL < TLFMX1) then Equation
3.1 is executed and Equation 3.2 is skipped. Otherwise, Equation
3.1 is skipped and Equation 3.2 is executed

3.1 DGRALP=MIDVAL(GRALPR–ALPHA, GRALL, GRALU2)

Figure 3: The changes to GRALPC. In the CR this
appears as a set of hand annotations to the
original specification. We have modified the
wording slightly so we can present it separately.

an event table for SMNZ1. In this case, there is only one
possible solution. Indeed, the new value of SMNZ1 in
GRNZC is computed using the old value of SMNZ1; we
thus have to use an event table. Also, SMNZ1 is given a
new value only under certain conditions, so we would not
be able to write a complete condition table. The table for
SMNZ1 is shown in figure 4. Note that in the final row,
the result uses DGRNZT’ because DGRNZT is computed
just before SMNZ1 and this is the new value that we need
in order to compute SMNZ1.

ALPCMD is computed only in GRALPC. The
requirements for ALPCMD can be summarized as:
If IPHASE = 6 then

If CONT = OFF then ALPCMD = ALPREC
If CONT = ON then ALPCMD = MIDVAL
(ALPRECS*MACH + ALPRECI, ALPRECU, ALPRECL)

If IPHASE /= 6 then
If IGRA = 0 then ALPCMD = ALPHA and IGRA = 1
If IGRA = 1 then

ALPCMD = ALPCMD + DGRALP
If (DGRALP < 0.0 and ALPCMD <= GRALPR)

or (DGRALP > 0.0 and ALPCMD > GRALPR
then ALPCMD = GRALPR and IGRA = 2

If IGRA /= 1 then ALPCMD = GRALPR
The problem we have to face here is sequence. The

requirements are written in pseudo-code and often use the
fact that instructions are executed one after another. For
example, here, if IPHASE ≠ 6 and IGRA = 0, we have
ALPCMD = ALPHA, then ALPCMD = ALPCMD +
DGRALP. After that, a test is made on the value of
ALPCMD that has just been computed and ALPCMD may
be given yet another value. In this case that ALPCMD is

being used to store intermediate calculations.
Expressing this in SCR is not straightforward. We are

obliged to flatten the sequential computations expressed
in the requirements. For example, for the last test on the
values of DGRALP and ALPCMD, we cannot simply use
DGRALP and ALPCMD because these refer to the old
values of the variables; we should use DGRALP’ and
ALPCMD’. However, primed variables are not allowed in
the event part of the table. We thus have to explicitly write
MIDVAL(GRALPR – ALPHA, GRALL, GRALU) for
DGRALP’ and ALPCMD + MIDVAL(GRALPR – ALPHA,
GRALL, GRALU) for ALPCMD’. Finally, these expressions
can be simplified by defining them as terms.

The complete table for ALPCMD is given in figure 5.
We use the phase mode in this table. We could also have
used the function mode but it would have been less suited
because ALPCMD is only computed in one function.

4.2 Modeling the Changes

Once the SCR model of the existing requirements was
available, modeling the change request was relatively
straightforward. The new variables and I-loads were
added to the variable and constant dictionary. For each
new variable, a table was defined, using the same process
as described above. In some cases, the addition or deletion
of equations led to changes in the existing tables.
Typically, the addition of a new equation requires the
addition of a column to the event or condition table
representing the variable. In some cases the changes were
harder to trace, as they represented intermediate equations
in a sequence that had been ‘flattened’ when it was

Modes Events
GRINIT NEVER @T(Inmode) when (INIT_PASS=OFF) NEVER

GRNZC @T(Inmode) NEVER NEVER

GRALPC NEVER NEVER @T(Inmode) when (IPHASE=6 AND
HDOT >= HDMAX AND CONT=ON)

SMNZ1’ = SMNZC3 * SMNZ1 SMNZC1 ZDT1 * DGRNZT’

Figure 4: The Event table for SMNZ1. The notation @T(c) represents the event ‘condition c becomes
true’. Inmode is used as shorthand for entry into the mode.

Modes Events
ph6 @T(FN=GRALPC)

when
(CONT=OFF)

@T(FN=GRALPC)
when (CONT=ON)

NEVER NEVER NEVER

ph5,ph4,ph3,
ph2,ph1,ph0

NEVER NEVER @T(FN=GRALPC)
when ((IGRA=0)
and not(COND))

@T(FN= GRALPC)
when (((IGRA=1 or

IGRA=0) and
COND) or IGRA=2)

@T(FN=
GRALPC) when

(IGRA=1 and
not(COND))

ALPCMD’ = ALPREC MIDVAL(ALPRECS *
MACH + ALPRECI,

ALPRECU, ALPRECL)

ALPHA +
DGRALP’

GRALPR ALPCMD +
DGRALP’

Figure 5. The event table for ALPCMD. The expression COND is defined as (DGRALP_PRIME<0.0 and
ALPCMD_PRIME<=GRALPR) or (DGRALP_PRIME>0.0 and ALPCMD_PRIME>GRALPR).

modeled in SCR. In such cases, better traceability
between the original specification and the SCR model
would be helpful – in some cases we ended up having to
reconstruct the process by which the SCR model was
derived, in order to reason about how a change should be
modeled.

In effect, to model the change request, we modeled the
entire functionality as it would be once the change is
applied. The anticipated benefits of formal modeling are
then available: the model can be automatically checked
for consistency, the simulator can be used to observe the
behavior under different conditions, and assertion
checking can be used to verify key properties. However,
this approach did not allow us to model nor reason about
the changes in isolation from the original requirements.
This has two drawbacks. Firstly, errors detected in the
new model have to be traced back to determine if they are
errors in the original specification, or errors in the change
request. This is also true of our own modeling errors.
Secondly, it means that a much larger formal model needs
to be constructed than we had hoped, as we cannot just
model the changes.

5. Results

We modeled the RTLS TAEM Guidance requirements,
and modified the model according to the ECAL change
request. We obtained a specification with 30 types in the
type dictionary, 2 mode classes, 265 constants, 165
variables, 2 mode class tables, 46 controlled variable
tables and 84 term tables. The SCR consistency checker
discovered a number of typographic and syntactical errors
and unspecified variables that were errors made during
our modeling process. As with earlier studies [3], the fact
that the consistency checker automatically detects such
errors gives us greater confidence that the final model is
faithful to the original specification.

A number of defects occurred in both the original
specifications and the change request. We found these
defects in two ways: ambiguities found during modeling,
and inconsistencies found using the SCR toolset. These
were as follows:
Ambiguities: An important systematic ambiguity was

detected in the FSSR. The detailed requirements are
given as a kind of pseudo-code and there are a number
of conditional branches. The ambiguity arises when the
end of a conditional branch is not clearly indicated. For
example, the sequence of execution in GREXEC
contains the phrases “If IPHASE ≥ 4 then logic set 1 is
executed”; “After logic set 1 is executed, another test
on IPHASE is performed ...”, and so on. However, it is
not clear whether the latter means the test is performed
only if logic set 1 was executed, or whether it should be
performed anyway. For the diagram in figure 1 we
assumed the latter. This type of ambiguity occurs

throughout the requirements. Furthermore, it also
occurred in the change request. For example, in figure 3
a condition is introduced to select between equations
3.1 and 3.2. It is not clear then whether equations 3.3
and 3.4 should then be executed in both cases. This
particular error was also detected in the inspection
process, and was corrected in later revisions of the
change request.

Missing initial values: SCR requires all variables to have
defined initial values. The original specification only
lists initial values for those internal variables (i.e. terms
in SCR) for which initialization is needed to ensure
correct functioning. It could be argued that a missing
initial value is not an error in the specification unless
there is a variable that is used before it is assigned a
value. SCR did not allow us to distinguish such cases.

Type errors: The specification sometimes used ‘true’ and
‘false’ instead of ‘on’ and ‘off’ for a variable defined as
a flag. This is a documentation error in the original
specification. Note that in HAL/S, the programming
language used for Shuttle avionics, these values are
synonyms. Inconsistent use in the specification is
considered a question of style, rather than an error.

Modified constants: The shuttle specifications make use
of constants, I-loads, and K-loads. Constants tend to be
used only for fundamental physical constants. I-loads
are mission-specific parameters (e.g. payload weight) or
flight parameters for which optimal values have not yet
been determined. K-loads are flight parameters that are
held fixed over a number of missions. In our SCR
model, we modeled all of these as constants.
Consistency checking then revealed that some I-load
values are modified in the detailed requirements. This is
not regarded as an error by the requirements analysts,
but happens sufficiently rarely that it is useful to be able
to detect occurrences automatically.

Dependency cycles: A dependency cycle was detected
between variables PHIC and PHILIMIT. PHIC is
computed using PHILIMIT when IPHASE = 0 and
PHILIMIT is computed using PHIC value when
IPHASE = 3. This is not a real dependency cycle
because both variables can be calculated in every case.
If IPHASE = 0, PHILIMIT is first given a value, then
PHIC is calculated using that value. If IPHASE = 3, it is
the other way round. SCR checks for cycles by building
for every variable, v, a dependency list containing all
the variables needed for the computation of v. This list
is not parameterized by different conditions. The
checker consequently detects a cycle. We removed this
cycle by defining two additional variables:
- PHICbis has the same value as PHIC but is only
computed when IPHASE = 3. It is used by PHILIMIT
but does not depend on it.
- PHILIMITbis has the same value as PHILIMIT but is
only computed when IPHASE = 0. It is used by PHIC
but does not depend on it.

Coverage errors: Coverage errors exist when a condition

table does not define the value of a variable for all
possible conditions. We found that coverage errors
occurred for two reasons. Firstly, they represented cases
where the value of a variable is given for some
conditions, with the assumption that it keeps its old
value otherwise. This would normally be represented as
an event table in SCR, except that we found cases
where there was no event (and therefore no state
change) associated with the variable. This issue is
discussed further below. The second case is when the
value is left undefined under some conditions because
those conditions are expected never to occur. This case
cannot be represented in SCR, which means that we
lose the opportunity to check automatically that the
undefined state never does occur.
The majority of these findings would not be considered

errors by shuttle requirements analysts. In some cases
(e.g. modification of I-loads) it is useful to be able to
automatically detect them, as they may lead to errors. It is
also very useful to be able to automate many of the
tedious manual consistency checks applied by IV&V
analysts. Moreover, failure to find many inconsistencies
was not surprising: this is a mature specification.

6. Discussion

In this section, we discuss our observations on the
suitability of SCR for analysis of this type of change
request. We first give an overall view of the advantages
and disadvantages of applying SCR then detail one
particular issue: the need to represent structure.

6.1 Benefits and difficulties of SCR

In this study, we used SCR for an analysis task that is
slightly different from that for which SCR was intended.
SCR has been used both for initial modeling of
requirements, and for reverse engineering requirements
models from detailed specifications [1]. However, in
either case, the normal approach is to develop a formal
specification as a replacement for an informal
specification: emphasis is placed on establishing the
correctness of a formal model, rather than the correctness
of an existing informal specification. In our study, we
used SCR to analyze (changes to) an informal
specification without replacing it. This implies a need for
greater flexibility in structuring the formal model, to
allow a better mapping between the informal specification
and the formal model.

In many ways, SCR is well suited to the task. The
organization of the SCR specification followed naturally
from the organization of the existing documentation,
where tables of input and output variables are already
given for each function. Furthermore, the automated
consistency checking tool proved to be extremely useful

for debugging our model, and for revealing defects in the
original specification.

However, there were a number of difficulties that arose
from the gulf between the conceptual model on which
SCR is based, and that used in the informal specification
that we were analyzing:
(1) We found it a difficult abstraction step from the

sequential processing narrative to a state machine
model. A single state change in the SCR model often
represents a long series of calculations in the detailed
specification. In some cases we had to introduce
artificial states to facilitate the modeling process.

(2) We found that a precise understanding of the detailed
semantics of SCR was needed to avoid or remove
dependency cycles.

(3) Traceability between the original specification and
the SCR model became a problem as the model grew.

(4) The main structure of FSSR (a functional
decomposition) could not be expressed in the SCR
model, hence some of the consistency checking of the
FSSR that we had hoped to do was not possible. We
further discuss this issue below.

In addition to these issues, the current toolset can be
regarded as a research prototype. It imposes some
restrictions on the expressiveness of the SCR model,
which we anticipate can be addressed relatively easily.
Briefly, these are: (1) the ability to use ‘undefined’ as a
value for any variable. This would allow us to accurately
model situations where no initialization value is
necessary, as our current solution of picking arbitrary
initialization values can mask errors in the specification.
(2) the ability to use ‘unchanged’ in condition tables, or
symmetrically, to add a ‘continuously’ event to event
tables, as proposed in [4]. This allows a hybrid between
condition and event tables, for variables that are updated
in response to events in some places, and continuously in
others. (3) The ability to define support functions, such as
trigonometric functions, in the tool. The NRL team has
added some of these functions to the tool at our request,
but a general solution is needed for including functions in
an SCR model.

6.2 Structuration issues

The most important disadvantage of SCR in this case
study is the lack of structuring primitives. Given the way
the requirements are expressed, we would have liked to
write one SCR specification for each function and then to
compose these specifications to get the system
specification. The SCR method does not provide this type
of compositionality and we were consequently forced to
write one single specification for the whole system. This
introduced several problems.

Firstly, we found it hard to maintain traceability
between the SCR specification and the original

requirements. Each variable of the system is defined by an
SCR table, but this table does not indicate in which
function(s) the variable is computed. In practice, we used
two methods to record links from the SCR specification to
the original requirements: the function mode and the
comment part of the variable dictionary. Moreover, the
SCR specification obtained for the whole system is quite
large, and so is not easy to read and understand.

Secondly, the interconnections between the different
functions cannot be checked in the SCR model. These
interconnections correspond to dataflows across a
functional decomposition. As SCR does not allow these to
be expressed, we would need to use a separate modeling
tool to check consistency of these.

Finally, structure is important to deal with changes.
Structure can be used to isolate changes, and to allow
some parts of a specification to be modified more easily.
Structure also provides a framework for comparing two
versions of a specifications. A specification that is well
structured is more robust in the face of change.

In [4], an experience using CoRE (Consortium
Requirements Engineering) to specify a flight guidance
system is reported. A CoRE specification consists of two
parts: a behavioral model similar to SCR and a class
model that superimposes an object-oriented organization
on the behavioral model by grouping portions of the
specification that are related and likely to change. The
authors conclude that the class model is very useful to
organize a specification and make it robust in the face of
change. As yet, the CoRE method has no formal
semantics and no associated tool.

A structuration like the one proposed in CoRE is an
interesting first step. It addresses our concerns with
readability and traceability. However, the structuration in
CoRE is only syntactic: some parts of the global
specification are grouped into classes, but the monitored
and controlled variables are all global with respect to the
system. Hence a system specified in CoRE cannot be
reused as a component of a bigger system.

Ideally, we would like to be able to define SCR
components, to interconnect them, and to compose them
to derive a new SCR specification, describing the whole
system. In this way encapsulation can be achieved within
each component specification, without limiting the
compositionality to one or two levels. Verification could
be performed on each SCR component and on the
interconnections in order to decrease the number of
checks that have to be done on the global specification.

7. Conclusions and Future work

Our main conclusion from this study is that although
SCR is well adapted to modeling this type of system, and
provides a prototype tool to perform consistency
checking, it is still immature in some important respects

for widespread adoption. There are two areas that we feel
need further attention, namely mechanisms for structuring
SCR specifications by composing specifications for
individual components, and mechanisms for the
management of change, so that different versions of a
specification can be stored, and the relationships between
them analyzed.

To address these issues we are proceeding with several
related studies. Firstly, we are exploring how to handle the
structuration in SCR. We have examined a framework for
composing SCR specifications, and are currently
implementing a prototype tool to permit this. As an initial
test of this tool, we will develop a model of the
requirements described in this case study, broken down
into separate models for each function.

Secondly, we are re-visiting our initial decision to use
SCR for this type of analysis. It is possible that the
problems we encountered might not occur with other
modeling methods. Accordingly we plan to model the
same set of requirements using techniques such as RSML
[5]. RSML is an interesting choice because it includes
some of the composition primitives that we would like to
see added to SCR. In particular, sequential composition of
RSML specifications has been proposed and explored. By
applying RSML to the same case study, we hope to obtain
a detailed comparison of the two methods, especially with
respect to their ability to handle structure and change.

8. Acknowledgements

We would like to thank John Bradbury and Vince Shah of the
Shuttle IV&V team for assistance with the modeling, and Bruce
Labaw and Connie Heitmeyer for assistance with the SCR tool.
This work was partially supported by NASA grant NAG 2-1134.

9. References

[1] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw,
“Automated Consistency Checking of Requirements
Specifications,” ACM Transactions on Software
Engineering and Methodology, vol. 5, pp. 231-261, 1996.

[2] C. L. Heitmeyer, J. J. Kirby, B. Labaw, M. Archer, and R.
Bharadwaj, “Using Abstraction and Model Checking to
Detect Safety Violations in Requirements Specifications,”
IEEE Transactions on Software Engineering, vol. 24, 1998.

[3] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo,
and D. Hamilton, “Experiences Using Lightweight Formal
Methods for Requirements Modeling,” IEEE Transactions
on Software Engineering, vol. 24, pp. 1-11, 1998.

[4] S. Miller and K. Hoech, “Specifying the mode logic of a
flight guidance software in CoRE,” Formal Methods in
Software Practice, Clearwater Beach, Florida, USA, March
4-5, 1998.

[5] M. Heimdahl and N. Leveson, “Completeness and
Consistency Analysis of State-Based Requirements,” IEEE
Transactions on Software Engineering, vol. 22, pp. 363-
377, 1996.

10

